Non-integrability of homogeneous two-dimensional Hamiltonians with velocity-dependent potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 213547
(http://iopscience.iop.org/0305-4470/21/18/011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:59

Please note that terms and conditions apply.

Non-integrability of homogeneous two-dimensional Hamiltonians with velocity-dependent potential

D Roekaerts $\dagger \ddagger$ and H Yoshida§ $\|$
\dagger Instituut voor Theoretische Fysica, Universiteit Leuven, B-3030 Leuven, Belgium
§ Centre de Physique Théorique, Ecole Polytechnique, F-91128 Palaiseau, France

Received 2 November 1987, in final form 3 May 1988

Abstract

The non-integrability of classes of homogeneous two-dimensional Hamiltonian systems with a polynomial velocity-dependent potential is shown on the basis of Ziglin's theorem. An analytic expression for the trace of the relevant monodromy matrices is presented which fits the numerical data perfectly. An application is made to Fokker-Planck Hamiltonians with quadratic and with cubic drift terms.

1. Introduction

Given a class of two-dimensional Hamiltonian systems one is interested in identifying all completely integrable cases, i.e. all cases for which a second integral of motion exists [1]. A claim of completeness of the results can only be made if each case is either shown to be integrable or shown to be non-integrable. For the former, explicit construction of the second integral is sufficient, while for the latter a proof that some necessary condition following from the existence of a second integral is violated would be necessary.

The contribution to this ambitious programme that we present in this paper is a proof of non-integrability of large classes of Hamiltonian systems of the form

$$
\begin{equation*}
H(p, q)=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)+p_{1} A\left(q_{1}, q_{2}\right)+p_{2} B\left(q_{1}, q_{2}\right)+C\left(q_{1}, q_{2}\right) . \tag{1}
\end{equation*}
$$

For general A, B and C, these systems describe particle motion in a transverse magnetic field-for $C=0$ they are associated with the weak noise limit of Fokker-Planck equations [2]. Their integrability has been studied in [2-5].

Sufficient conditions for non-integrability (i.e. non-existence of an additional analytic integral) are provided by Ziglin's theorem [6]. Originally it was applied to the motion of a rigid body around a fixed point [6]. Recently it has been applied to Hamiltonians of the form (1) with $A=B=0$ and $C\left(q_{1}, q_{2}\right)$: (i) a homogeneous potential [7,8], (ii) some generalised Toda lattice [9], (iii) some perturbed Kepler potential [10], (iv) a non-homogeneous polynomial potential [11-15]. In physical applications, non-homogeneous systems are in general the most relevant. But in the method of [14] the results on homogeneous systems form an essential ingredient in the application to

[^0]non-homogeneous systems. Therefore, in the case that A and B in (1) are non-zero, it is natural to start with a study of homogeneous systems.

Let us assume that A, B and C in (1) are homogeneous polynomials of degree d, d and $2 d$, respectively $(d \geqslant 2)$. The application of Ziglin's theorem requires a knowledge of certain monodromy matrices associated with the normal variational equation (NVE) around straight line solutions. For the system under consideration here, in general no analytic formulae for the monodromy matrices are known. Therefore we have calculated them numerically. On the one hand, this leads to a purely numerical nonintegrability proof on the basis of Ziglin's theorem, and on the other hand it turns out that the monodromy matrices are fitted perfectly by an analytic formula which is therefore conjectured to be rigorously exact.

The rest of this paper is organised as follows. In § 2, the NVE around straight line solutions is obtained. In $\S 3$, Ziglin's theorem is recalled and its numerical implementation is explained. In $\S 4$, our main results are presented. In $\S 5$, two examples are given, and the appendix contains the FORTRAN program by which the numerical results of $\S 4$ were obtained.

2. Variational equations around a straight line solution

By Hamilton's equations of motion

$$
\begin{equation*}
\mathrm{d} \boldsymbol{q} / \mathrm{d} t \equiv \partial \boldsymbol{H} / \partial \boldsymbol{p} \quad \mathrm{d} \boldsymbol{p} / \mathrm{d} t=-\partial \boldsymbol{H} / \partial \boldsymbol{q} \tag{2}
\end{equation*}
$$

with Hamiltonian (1) the equations of motion for q are written as

$$
\begin{align*}
& \ddot{q}_{1}=\dot{q}_{2} U\left(q_{1}, q_{2}\right)-W_{, 1}\left(q_{1}, q_{2}\right) \tag{3}\\
& \ddot{q}_{2}=-\dot{q}_{1} U\left(q_{1}, q_{2}\right)-W_{, 2}\left(q_{1}, q_{2}\right) \tag{4}
\end{align*}
$$

where $W_{, 1}:=\partial W / \partial q_{1}$, etc, and $U\left(q_{1}, q_{2}\right)$ and $W\left(q_{1}, q_{2}\right)$ are gauge-invariant potentials:

$$
\begin{align*}
& U\left(q_{1}, q_{2}\right)=A_{2}\left(q_{1}, q_{2}\right)-B_{11}\left(q_{1}, q_{2}\right) \tag{5}\\
& W\left(q_{1}, q_{2}\right)=C\left(q_{1}, q_{2}\right)-\frac{1}{2}\left\{A\left(q_{1}, q_{2}\right)\right\}^{2}-\frac{1}{2}\left\{B\left(q_{1}, q_{2}\right)\right\}^{2} \tag{6}
\end{align*}
$$

If $U=0$, (1) can be transformed by a gauge transformation to a Hamiltonian with $A=B=0$, the non-integrability of which was studied in [7,8]. Given our assumptions on A, B and C, the general form of U and W is

$$
\begin{align*}
& U\left(q_{1}, q_{2}\right)=\sum_{k=0}^{d-1} u_{k} q_{1}^{k} q_{2}^{d-1-k} \tag{7}\\
& W\left(q_{1}, q_{2}\right)=\sum_{k=0}^{2 d} w_{k} q_{1}^{k} q_{2}^{2 d-k} \tag{8}
\end{align*}
$$

with constants $u_{k}, k=0, \ldots, d-1$ and $w_{k}, k=0, \ldots, 2 d$.
First we make a rotation of coordinates in the $\left(q_{1}, q_{2}\right)$ plane so that $w_{1}=0$ in the new coordinate system, which is always possible. Then we assume also that $u_{0}=0$ in the same coordinates. This is a sufficient condition for (3) and (4) to have a straight line solution of the form

$$
\begin{equation*}
q_{1}=0 \tag{9}
\end{equation*}
$$

with

$$
\begin{equation*}
\ddot{q}_{2}=-w_{2}\left(0, q_{2}\right)=-2 d w_{0} q_{2}^{2 d-1} . \tag{10}
\end{equation*}
$$

We now consider a particular solution of (10), namely

$$
\begin{equation*}
q_{2}(t)=c \phi(t) \tag{11}
\end{equation*}
$$

with $\phi(t)$ the solution of

$$
\begin{equation*}
\mathrm{d}^{2} \phi / \mathrm{d} t^{2}+\phi^{2 d-1}=0 \tag{12}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
\phi=0 \quad \mathrm{~d} \phi / \mathrm{d} t=-1 / \sqrt{d} \quad \text { at } t=0 \tag{13}
\end{equation*}
$$

and ($w_{0} \neq 0$ is assumed)

$$
\begin{equation*}
c=\left(\frac{1}{2 d w_{0}}\right)^{1 /(2 d-2)} . \tag{14}
\end{equation*}
$$

Because of the scale invariance of the system (2)-(8) the non-integrability at the particular non-zero energy associated with (11) implies the non-integrability at any non-zero energy. Therefore it is sufficient to consider the particular solution (11).

Since $\phi(t)$ is the inverse function of

$$
\begin{equation*}
t=\sqrt{d} \int \mathrm{~d} z /\left(1-z^{2 d}\right)^{1 / 2} \tag{15}
\end{equation*}
$$

$\phi(t)$ has, in the complex t plane, the following independent periods:

$$
\begin{align*}
T_{n} & =4 \exp [\mathrm{i} \pi(n-1) / d] \sqrt{d} \int_{0}^{1} \mathrm{~d} z /\left(1-z^{2 d}\right)^{1 / 2} \\
& =2(\pi / d)^{1 / 2} \exp [\mathrm{i} \pi(n-1) / d] \Gamma(1 / 2 d) / \Gamma\left(1 / 2 d+\frac{1}{2}\right) \tag{16}
\end{align*}
$$

($n=1,2, \ldots, d$).
Next, linearising (3) and (4) around the straight line solution $q_{1}=0$, one obtains the variational equation ($\xi_{1}=\delta q_{1}, \xi_{2}=\delta q_{2}$)

$$
\begin{equation*}
\ddot{\xi}_{1}+\left(\varepsilon \phi^{2 d-2}-\mathrm{i} \gamma \dot{\phi} \dot{\phi}^{d-2}\right) \xi_{1}=0 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{\xi}_{2}+(2 d-1) \phi^{2 d-2} \xi_{2}=0 \tag{18}
\end{equation*}
$$

with

$$
\begin{equation*}
\gamma=u_{1} /\left(-2 d w_{0}\right)^{1 / 2} \quad \varepsilon=w_{2} / d w_{0} . \tag{19}
\end{equation*}
$$

The equation for ξ_{1} (17) is called the normal variational equation (NVE), since it describes the variation normal to the given straight line solution $q_{1}=0$. The parameters entering the NVE are d, characterising the degree of the potential, and ε and γ defined by (19). It should be remarked that γ and ε are independent of $u_{k}, k>1$, and $w_{k}, k>2$.

In the next section we show how, using Ziglin's theorem for every d, values of γ and ε can be found for which the Hamiltonian system is non-integrable.

3. Ziglin's theorem

The nve (17) is a Hill equation with multiple periods $T_{1}, T_{2}, \ldots, T_{d}$. To each period $T_{n}, 1 \leqslant n \leqslant d$, is associated a monodromy matrix $M\left(T_{n}\right)$. The set of all monodromy matrices forms a group, called the monodromy group. A monodromy matrix M is defined to be non-resonant when the eigenvalues ($\rho, 1 / \rho$) are not roots of unity. One has that $|\operatorname{Tr} M|>2$ implies that M is non-resonant. The form of Ziglin's theorem that we use in this paper is as follows.

Theorem [6]. If the monodromy group associated with the NVE belonging to the straight line solution $q_{1}=0$ contains two non-resonant monodromy matrices which do not commute, then the Hamiltonian system cannot possess an additional integral $\Phi(q, p)=$ constant which is analytic (holomorphic), at least in the neighbourhood of the given straight line.

When $\gamma=0$, the monodromy matrices of the NVE (17) have been obtained explicitly via a transformation of the NVE into the Gauss hypergeometric equation. The result of [7] is summarised as follows: $\operatorname{Tr} M\left(T_{n}\right)$ is independent of the period T_{n} and the explicit expression is $\operatorname{Tr} M\left(T_{n}\right)=f_{2 d}(\varepsilon)$, where

$$
\begin{equation*}
f_{2 d}(\varepsilon)=4 \cos ^{2}\left\{(\pi / 2 d)\left[(d-1)^{2}+4 d \varepsilon\right]^{1 / 2}\right\} / \sin ^{2}(\pi / 2 d)-2 \tag{20}
\end{equation*}
$$

Furthermore, $M\left(T_{1}\right)$ and $M\left(T_{2}\right)$ only commute when $f_{2 d}(\varepsilon)= \pm 2$. Thus, if ε is in the region

$$
\begin{equation*}
S_{2 d}=\{\varepsilon<0,1<\varepsilon<2 d-1,2 d+2<\varepsilon<6 d-2, \ldots\} \tag{21}
\end{equation*}
$$

such that $f_{2 d}(\varepsilon)>2$, then two monodromy matrices $M\left(T_{1}\right)$ and $M\left(T_{2}\right)$ are both non-resonant and non-commuting. By Ziglin's theorem, this implies the non-integrability of the system and region (21) is called the non-integrability region.

When $\gamma \neq 0$ we have no explicit expression of the monodromy matrices. Nevertheless in this situation Ziglin's theorem can be applied on the basis of numerical data. The monodromy matrices $M\left(T_{n}\right), 1 \leqslant n \leqslant d$ can be obtained numerically as follows. Consider two independent solutions of the NVE (17), $\xi^{(1)}(t)$ and $\xi^{(2)}(t)$ with initial conditions

$$
\begin{array}{llll}
\xi^{(1)}(0)=1 & \dot{\xi}^{(1)}(0)=0 & \xi^{(2)}(0)=0 & \dot{\xi}^{(2)}(0)=1 \tag{22}
\end{array}
$$

and for every period $T_{n}, 1 \leqslant n \leqslant d$, integrate the NVE (17) numerically along the straight path from 0 to T_{n} in the complex t plane (using, e.g., the fourth-order complex Runge-Kutta method). At the end of each integration path one gets the monodromy matrix

$$
M_{n} \equiv M\left(T_{n}\right)=\left(\begin{array}{ll}
\xi^{(1)}\left(T_{n}\right) & \xi^{(2)}\left(T_{n}\right) \tag{22}\\
\dot{\xi}^{(1)}\left(T_{n}\right) & \dot{\xi}^{(2)}\left(T_{n}\right)
\end{array}\right)
$$

When it is found that $\left|\operatorname{Tr} M_{n}\right|>2$ it can be concluded that M_{n} is non-resonant. For $\left|\operatorname{Tr} M_{n}\right| \leqslant 2$ non-resonant monodromy matrices cannot be identified numerically. Whether or not two monodromy matrices M_{k} and M_{i} commute can be decided on the basis of the numerical value of the following norm of the commutator:

$$
\begin{equation*}
\left\|\left[M_{k}, M_{i}\right]\right\|=\sum_{i, j=1}^{2}\left|\left(M_{k} M_{i}-M_{i} M_{k}\right)_{i j}\right| \tag{24}
\end{equation*}
$$

When it is significantly non-zero, one can say that M_{k} and M_{l} do not commute.
Finally, if one finds two non-resonant monodromy matrices that do not commute one can conclude that the system is non-integrable. In order to find for any fixed d the non-integrability region in the (ε, γ) plane, generalising the non-integrability region $S_{2 d}$ on the line $\gamma=0$, this procedure is to be followed for all (ε, γ) on a sufficiently dense grid in this plane.

In the next section the results we obtained using this method are given.

4. Main results-numerical facts

By using the fortran program given in the appendix and straightforward extensions of it, we computed monodromy matrices $M_{n}, n=1,2, \ldots, d$, for $d=2,3,4,5,6$ at square grid points on the (ε, γ) plane and, by the procedure explained in the previous section, obtained the non-integrability region. We also found analytical formulae which perfectly fit the numerical data for the traces of the monodromy matrices and for the curves where two monodromy matrices commute. We checked the formulae up to $d=10$. Until now we have not found a rigorous proof of these formulae, so we present them as numerical facts.

A systematic difference occurs between the cases with d even and with d odd. A special role is played by certain straight lines and parabolas in the (ε, γ) plane which we introduce first.

Definition.

(i) for d even
$P^{d}=\left\{(\varepsilon, \gamma) \mid \varepsilon-\gamma^{2} /(k d+1)^{2}-(k d+1)^{2} /(4 d)+(d-1)^{2} /(4 d)=0, k\right.$ odd integer $\}$
$K_{+}^{d}=\left\{(\varepsilon, \gamma) \mid \varepsilon+\gamma / \sqrt{d}-d k^{2} / 4+(d-1)^{2} /(4 d)=0, k\right.$ odd integer $\}$
$K_{-}^{d}=\left\{(\varepsilon, \gamma) \mid \varepsilon-\gamma / \sqrt{d}-d k^{2} / 4+(d-1)^{2} /(4 d)=0, k\right.$ odd integer $\}$.
(ii) For d odd
$Q^{d}=\left\{(\varepsilon, \gamma) \mid \varepsilon+\gamma / k^{2} d^{2}-k^{2} d / 4+(d-1)^{2} /(4 d)=0, k\right.$ odd integer $\}$
$L_{+}^{d}=\left\{(\varepsilon, \gamma) \mid \varepsilon+\gamma / \sqrt{d}-(k d+1)^{2} /(4 d)+(d-1)^{2} /(4 d)=0, k\right.$ odd integer $\}$
$L_{-}^{d}=\left\{(\varepsilon, \gamma) \mid \varepsilon-\gamma / \sqrt{d}-(k d+1)^{2} /(4 d)+(d-1)^{2} /(4 d)=0, k\right.$ odd integer $\}$.
For the trace of the monodromy matrices M_{n} we obtain the following result.
Fact 1. Let

$$
\begin{align*}
& s_{+}=\left[(d-1)^{2}+4 d(\varepsilon+\gamma / \sqrt{d})\right]^{1 / 2} \tag{31}\\
& s_{-}=\left[(d-1)^{2}+4 d(\varepsilon-\gamma / \sqrt{d})\right]^{1 / 2} \tag{32}
\end{align*}
$$

then $\operatorname{Tr} M_{n}, n=1,2, \ldots, d$ is real and independent of n and given by

$$
\begin{equation*}
\operatorname{Tr} M_{n}=F_{2 d}(\varepsilon, \gamma) \tag{33}
\end{equation*}
$$

where (i) when d is even

$$
\begin{align*}
F_{2 d}(\varepsilon, \gamma)=2+ & 4\left\{\cos (\pi / d)+\cos \left[\pi\left(s_{+}+s_{-}\right) / 2 d\right]\right\} \\
& \times\left\{\cos (\pi / d)+\cos \left[\pi\left(s_{+}-s_{-}\right) / 2 d\right]\right\} / \sin ^{2}(\pi / d) \tag{34}
\end{align*}
$$

or (ii) when d is odd

$$
\begin{equation*}
F_{2 d}(\varepsilon, \gamma)=-2+4 \cos ^{2}\left[\pi\left(s_{+}+s_{-}\right) / 4 d\right] \cos ^{2}\left[\pi\left(s_{+}-s_{-}\right) / 4 d\right] / \sin ^{2}(\pi / 2 d) \tag{35}
\end{equation*}
$$

Properties which (34) and (35) have in common are

$$
\begin{equation*}
F_{2 d}(\varepsilon, 0)=f_{2 d}(\varepsilon) \tag{36}
\end{equation*}
$$

(i.e. the necessary compatibility relation with the known result for $\gamma=0$ is satisfied)

$$
\begin{equation*}
F_{2 d}(\varepsilon, \gamma)=F_{2 d}(\varepsilon,-\gamma) \tag{37}
\end{equation*}
$$

Figure 1. Non-integrability diagram belonging to the NVE (17) for $d=2$. On the parabolas $F_{4}(\varepsilon, \gamma)=2$ and on the isolated points $F_{4}(\varepsilon, \gamma)=-2$. The non-integrability region, indicated by NI , is the region where $F_{4}(\varepsilon, \gamma)>2$ minus the broken lines (see the text).

Figure 2. Non-integrability diagram belonging to the NVE (17) for $d=3$. On the parabolas $F_{6}(\varepsilon, \gamma)=-2$ and on the other curves $F_{6}(\varepsilon, \gamma)=+2$. The non-integrability region, indicated by Nl , is the region where $F_{6}(\varepsilon, \gamma)>2$.

Figure 3. The non-integrability diagram belonging to the NVE (17) for $d=4$. On the parabolas $F_{8}(\varepsilon, \gamma)=+2$ and on the isolated points $F_{8}(\varepsilon, \gamma)=-2$. The non-integrability region is the region where $F_{8}(\varepsilon, \gamma)>2$.

Figure 4. Non-integrability diagram belonging to the NVE (17) for $d=5$. On the parabolas $F_{10}(\varepsilon, \gamma)=-2$ and on the other curves $F_{10}(\varepsilon, \gamma)=+2$. The non-integrability region is the region where $F_{10}(\varepsilon, \gamma)>2$.
and

$$
\begin{equation*}
\min _{(\varepsilon, \gamma)} F_{2 d}(\varepsilon, \gamma)=-2 \tag{38}
\end{equation*}
$$

Further important properties of $F_{2 d}(\varepsilon, \gamma)$ can be seen in figures 1-4. There the sets where $F_{2 d}(\varepsilon, \gamma)= \pm 2$ are drawn. In figure $1, d=2$ and ε and γ range from 0 to 20. In figures 2,3 and $4, d=3,4$ and 5 , respectively, and ε and γ range from 0 to 100 . One has that:
(i) when d is even, $F_{2 d}(\varepsilon, \gamma)=2$ on the parabolas P^{d} given by (25) and $F_{2 d}(\varepsilon, \gamma)=$ -2 in the points where the two families of straight lines K_{+}^{d} and K_{-}^{d} given by (26) and (27) intersect;
(ii) when d is odd the curves on which $F_{2 d}(\varepsilon, \gamma)=2$ are not represented by a simple function (see figures 2 and 4) and $F_{2 d}(\varepsilon, \gamma)=-2$ on the parabolas Q^{d} given by (28).

In the region such that $F_{2 d}(\varepsilon, \gamma)>2$ we have non-resonant monodromy matrices $M_{1}, M_{2}, \ldots, M_{d}$. In particular the half-plane $\varepsilon<0$ belongs to this region.

It should be remarked that it was also found numerically that elements of the monodromy group other then M_{1}, \ldots, M_{d} never have absolute values of trace greater then two when $\operatorname{Tr} M_{n}<2$ and therefore cannot be used to provide a non-integrability proof in the region where $F_{2 d}(\varepsilon, \gamma) \leqslant 2$.

Next we proceed to the commutation properties of the monodromy matrices M_{1}, \ldots, M_{d}.

In general, the set of points where M_{k} and $M_{l}(1 \leqslant k \leqslant d)$ commute depends on k and l. With Ziglin's theorem in mind an optimal result would be that M_{k} and M_{l} never commute when they are non-resonant. For d odd this optimal result is already obtained choosing $k=1, l=2$ (see below), whereas for d even this choice is not optimal because the set of points in the (ε, γ) plane where M_{1} and M_{2} commute partially overlaps with the region where M_{1} and M_{2} are non-resonant. Therefore the commutator [M_{1}, M_{3}] was considered for d even and greater than two, and found to be optimal. More precisely the following results were obtained.

Fact 2.

(i) When $d=2, M_{1}$ and M_{2} only commute on the sets P^{2}, K_{+}^{2} and K_{-}^{2} given by (25), (26) and (27), respectively.
(ii) When d is even and greater than two, M_{1} and M_{3} only commute on the set P^{d}, given by (25), and in the points where the sets K_{+}^{d} and K_{-}^{d} given by (26) and (27) intersect.
(iii) When d is odd, M_{1} and M_{2} only commute on the set Q^{d} given by (28) and in the points where the sets L_{+}^{d} and L_{-}^{d} given by (29) and (30) intersect. In fact, these intersection points fall into two classes as follows: let $k_{+}=2 p_{+}+1$ and $k_{-}=2 p_{-}+1$ be the two odd integers characterising a line belonging to L_{+}^{d} and L_{-}^{d}, respectively. When p_{+}and p_{-}are not both even or not both odd the intersection point belongs to Q^{d} and when p_{+}and p_{-}are both even or both odd the intersection point lies on the curve where $F_{2 d}(\varepsilon, \gamma)=2$.

Combining fact 1 and fact 2 with Ziglin's theorem we can conclude the following statements.
(i) When $d=2$ the non-integrability region in the (ε, γ) plane is the region where $F_{4}(\varepsilon, \gamma)>2$ minus its intersection with the families of straight lines K_{+}^{2} and K_{-}^{2} given by (25) and (26), respectively.
(ii) When $d>2$ the non-integrability region in the (ε, γ) plane is the region where $F_{2 d}(\varepsilon, \gamma)>2$.

In figures 1-4 the non-integrability region is indicated by Nr.
Because of the high numerical accuracy and the consistency of all results, the authors strongly expect that facts 1 and 2 will be rigorously proved in the near future.

5. Examples

Any subclass of the models defined by (7) and (8) with, eventually in a rotated frame, $u_{0}=0, w_{0} \neq 0$, and $w_{1}=0$ could be taken as an example. Interesting subclasses are those for which integrability has been studied before or that appear in a physical context.

As a first example we consider a model with $d=2$, defined by

$$
\begin{equation*}
H=\frac{1}{2}\left(p_{1}^{1}+p_{2}^{2}\right)+p_{1} q_{1} q_{2}+p_{2}\left(a q_{1}^{2}+b q_{2}^{2}\right) \tag{39}
\end{equation*}
$$

with constants a and b. When $a=\frac{1}{2}$, the function U in (5) and (6) vanishes and the system is related by a gauge transformation to a one-parameter class of quartic scalar potentials and is known to be integrable for

$$
\begin{equation*}
b=-1,-\frac{1}{2}, 1 \text { and } 2 \tag{40}
\end{equation*}
$$

When $a \neq \frac{1}{2}$, (39) was shown to be integrable in [5] for

$$
\begin{equation*}
(a, b)=\left(\frac{1}{8}, 2\right),\left(-\frac{1}{4}, \frac{1}{2}\right),\left(\frac{1}{32}, 2\right),(0,1) \text { and }(0,-1) \tag{41}
\end{equation*}
$$

Applying the results of the previous section, non-integrability is shown for all values of a and $b(b \neq 0)$ such that $(\varepsilon(a, b), \gamma(a, b))$ with

$$
\begin{equation*}
\varepsilon=(1+2 a b) / 2 b^{2} \quad \gamma=(1-2 a) / \sqrt{2 b} \tag{42}
\end{equation*}
$$

does not belong to (26) or (27) with $d=2$, and $F_{4}(\varepsilon, \delta)>2$ in (34). In particular, non-integrability is shown for

$$
\begin{equation*}
(a, b)=\left(\frac{3}{8},-2\right) \text { and }\left((18+m)(18-m) /\left(16 m^{2}\right), 4\right) \tag{43}
\end{equation*}
$$

with $m=1$ or $m>18$, which are values for which the model passes the second step of Painlevé analysis and has rational Kowalevski exponents (see equation (32) in [5]).

As a second example we consider the Fokker-Planck Hamiltonians with cubic drift terms [2], $(d=3)$, defined by (1) with $C=0$ and

$$
\begin{align*}
& A=a_{1} q_{1}^{3}+a_{2} q_{1}^{2} q_{2}+a_{3} q_{1} q_{2}^{2}+a_{4} q_{2}^{3} \tag{44}\\
& B=b_{1} q_{1}^{3}+b_{2} q_{1}^{2} q_{2}+b_{3} q_{1} q_{1}^{2}+b_{4} q_{2}^{3} \tag{45}
\end{align*}
$$

where a_{i}, b_{i} are constants. By (5) and (6) the potentials U and W are computed. The existence of a straight line solution $q_{1}=p_{1}=0$ implies $u_{0}=3 a_{4}-b_{3}=0$ and $w_{1}=$ $-a_{3} a_{4}-b_{3} b_{4}=0$. If also $w_{0}=-\frac{1}{2}\left(a_{4}^{2}+b_{4}^{2}\right) \neq 0$ the results of the previous section can be applied with

$$
\begin{align*}
& \gamma=2\left(a_{3}-b_{2}\right) /\left[3\left(a_{4}^{2}+2 b_{4}^{2}\right)\right]^{1 / 2} \tag{46}\\
& \varepsilon=\left(a_{3}^{2}+b_{3}^{2}+2 a_{2} a_{4}+2 b_{2} b_{4}\right) /\left[3\left(a_{4}^{2}+b_{4}^{2}\right)\right] . \tag{47}
\end{align*}
$$

By the results of $\S 4$, the existence of a second integral for a model in this class is excluded in the range of parameters where $F_{6}(\varepsilon, \gamma)>2$. Finally we remark that integrable cases are given in the appendix of [2]. Taking into account all straight line solutions it can be shown that, for the model studied in that appendix, the results are complete, namely, the model is non-integrable except for the cases which were shown to be integrable.

Acknowledgments

One of us (DR) acknowledges support by the National Fund for Scientific Research (Belgium) as senior research assistant and by the Alexander von Humboldt Foundation for a stay at the Institute of Physics of the University of Essen where part of this work was done.

Appendix

```
C***************************************************************************)
C CALCULATION OF TRACE OF MONODROMY MATRICES
C PARAMETERS TO BE CHOSEN ARE DECREE D AND EPSILON ANO GAMMA APPOOOJO
```



```
    PROGRAM MAIN
    IMP\ICIT REAL*8(A-B D-H O-Z), COMPLEX*1G(C)
    COMMON EPS,GAM,PI,IDEG,NSTEP'NMPEN*G(O) APPOOO7O
    NSTEP=50
    GOTO 2
    WRITE(6,*)'YOUR CHOICE ? O=STOP, 1=NEXT'
    READ(5,*)! FLAG
    IF(I FLAG)999,999,2
    WRITE(6,*)'DEGREE D ? (|NTEGER), EPSILON AND GAMMA ? (REAL)' APPNU130
    READ(5,*) IDEG, EPS,GAM
    WRITE (6 *) TRACE OF MONODROMY MATRICES M1, 1=1....DI
    P!=4 DO*DATAN(1 DO) (1)
    DX=DCOS(FI/OFLOAT(IDEG))
    OY=DSIN(P)/DFLOAT(IDEG))
    COMEGA=CMPLX(DX,DY)
    DO 4 KH=1, IDEC
    CTINIT=(1.DO,O.ODO)
    CTFINA=CTINIT+(4.0DO,0.0DO)*COMEGA**(KK-1)
    CALL TRACE(CTINIT,CTFINA,CTRACE) APPIO2.30
        4 WRITE(6,*)CTRACE, APPUOZ4O
            GO TO 1 APPOO250
```



```
    END
        APPOOO260
        APPOO280
C****************************************************************
C SUBROUTINE TRACE CALCULATES TRACE OF MONODROMY MATRIX (CTRACE)* APPOU3OU
C FOR STRAIGHT LINE IN COMPLEX TIME PLANE FROH CTINIT TO CTFINA *
C******************************************************************
    SUBROUTINE TRACE(CTINIT,CTFINA,CTRACE)
    IMPLICIT REAL*8(A-B,D-H,O-Z),COMPLEX*16(C) APHGO34O
    DIMENSION CX(6)
    COMMON EPS,GAM,PI, IDEG,NSTEP APPO0360
    EXTERNAL CEQ1
    DEG=DFLOAT(IDEG)
    FACT=DSQRT(PI/DEG)/2.DO
    UNIT=FACT*DGAMMA(0.5DO/DEG)/DGAMMA(O.5DO/DEG+.5DO)
    CT=CT:N:T
    CX(1)=0.00
    CX(2)=-1.DD/SQRT(DEG)
    CX(3)=1.00
    CX(4)=0.OO
    CX(5)=0.D0
    Cx(6)=1.00
    CDELT=(CTINIT-CTFINA)/NSTEP*INNIT
    DO 20 j=1,NSTE.P
    CALL CRUNGT(6,CEQ1,CT,CX,COEI-T)
    CONTINUE
    CIRACE=CX(3)+CX(6)
    RETURN
    ENO
APPOOO320
    AP-APPOO350
    APP00360
    APPOO370
    APPOO380
    APPOO390
    APPOOO390
    APPOO400
    APP(10410
    APPOIO420
    APPOIO420
    APPPOOMB10
    APPu川u!
```



```
    APPOO4F%
    AP1P(H)
    APP%川480
    APP(0)/94
20
```

C COMPLEX FUNCIION CEOI CONTAINS THE EQUATIONS IHAT HAVE TO *
C COMPLEX FUNCTION CEOI CONTAMNS TNE EQUATHONS HTAMT MANE TO
APPU!57!
C BE INTEGRATED *
C***)
APPOOGOU
COMFLEX FUNCTION CEQI*16(1,CY.)
IMPLICIT REAL*8(A-B,D-H,O-Z),COMPLEX*16(C)
DIMENSION CX(6)
COMMON EPS,GAM,P:, IDEG,NSTEP
CGAM=(0.DO,1.DO)*GAM
CCAM=(0.DO,1.DO)*GAM
CEQ1=CX(2)
RETURN
20 RETURN
RETURN
CEQI= CX(4)
RETURN
40 FF(IOEG.GT.2)OOTO 42
CEQ1=1 EPS*CX(1)**2+CGAM*CX(2))*CX(3)
RETURN
42 CEQT = (-EPS*CX(1)**(2*IDEG-2) +COAM*CX(1)**(IDEG-2)*CX(2))*CX(3)
RETURN
CEQ1=CX(6)
RETURN
60 IF(IDEG.GT.2)GOTO 62
61 CEQ1=(-EPS*CX(1)**2+CGAM*CX(2))*CX(5)
RETURN
62 CEQ1=(-EPS*CX(1)**(2*1DEG-2)+CGAM*CX(1)**(1DEG-2)*CX(2))*CX(5)
RETURN
END
C** APPOOR7CJ

```

```

C** APPOOSOO
SUBROUTINE CRUNGE(N,F,T,X,DT) APM,
IMPLICIT COMPLEX*1G(A,-H,O-Z)
APPOO920
IMPLICIT COMPLEX*16(A-H,O-2)
OIMENSION X(6),X1(6),X2(6), X3(6),D(4,6)
OO 1O) = = N
O(1, 1)=F(1,火)*DT
10 x1(1)=x(1)+D(1,1)/2.000
00 20 =1,N
lol
20 <2(1)=>(1)+0(2,1)/2.000
00 30) 1 = 1,N
D(3,1)=F(i,*2)*OT
30)}\times3(1)=\times(1)+0(3,1
T}=\textrm{T}+0\textrm{T
DO40 1=1,N
D{4,1)=F(1, 人3)*DT
4\cap X(1)=x(1)+(0(1,1)+2.D()*O(2,1)+2.OO*O(3,1)+O(4,1)1)/6.00
RETURN
END
APP00580
APPOO610
APPOOG10
APP00G30
APPTOOE30
APPOO640
APPOO660
APPOO1670
APP00680
APP(10650
APPOOT0O
APPOO710
APPOO72O
APP
APP(0)730
APPOO740
APPOO7511
APPOO760
APPOO760
APPOOT70
APPPOO7811
APPOO780
APPOO790
APPOO800
APPOO\&10
APPO(1820
APPOO830
APP(0)840
APPOO850
APPOI960)
APPOMB7
APPOUQ30
APP(1)
APP(IOGGO
APP(JOO50
APPOOO7%
APPOOQ8O
00 30 1 = 1,N
APP(1010)
APP(10100%
APP(1020
APPO1(131)
APPO1(130
APFO11140
APHO1050
APPO1060
APPN1070
APPO1080
APPO1091

```

\section*{References}
[1] Hietarinta J 1987 Phys. Rep. 14787
[2] Graham R, Roekaerts D and Tél T 1985 Phys. Rev. A 313364
[3] Dorizzi B, Grammaticos B, Ramani A and Winternitz P 1985 J. Math. Phys. 263070
[4] Hietarinta J 1985 J. Math. Phys. 261970
[5] Roekaerts D and Schwarz F 1987 J. Phys. A: Math. Gen. 20 L127
[6] Ziglin S L 1983 Funct. Anal. Appl. 16 181, 176
[7] Yoshida H 1986 Physica 21D 163
[8] Yoshida H 1988 Physica 29D 128
[9] Yoshida H, Ramani A, Grammaticos B and Hietarinta J 1987 Physica 144A 310
[10] Yoshida H 1987 Phys. Lett. 120A 388
[11] Ito H 1985 Kodai Math. J. 8120
[12] Ito H 1987 J. Appl. Math. Phys. 38459
[13] Rod D L 1986 Preprint. On a theorem of Ziglin in Hamiltonian dynamics
[14] Yoshida H 1988 Commun. Math. Phys. 116529
[15] Yoshida H, Ramani A and Grammaticos B 1988 Physica 30D 151```


[^0]:    $\ddagger$ Present address: Koninklijke/Shell-Laboratorium Amsterdam, EP, Postbus 3003, NL-1003 AA Amsterdam, The Netherlands.
    || Present address: Department of Mathematics, Imperial College of Science and Technology, 180 Queen's Gate, London SW7 2BZ, UK.

