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Abstract. The non-integrability of classes of homogeneous two-dimensional Hamiltonian 
systems with a polynomial velocity-dependent potential is shown on the basis of Ziglin’s 
theorem. An analytic expression for the trace of the relevant monodromy matrices is 
presented which fits the numerical data perfectly. An application is made to Fokker-Planck 
Hamiltonians with quadratic and with cubic drift terms. 

1. Introduction 

Given a class of two-dimensional Hamiltonian systems one is interested in identifying 
all completely integrable cases, i.e. all cases for which a second integral of motion 
exists [l]. A claim of completeness of the results can only be made if each case is 
either shown to be integrable or shown to be non-integrable. For the former, explicit 
construction of the second integral is sufficient, while for the latter a proof that some 
necessary condition following from the existence of a second integral is violated would 
be necessary. 

The contribution to this ambitious programme that we present in this paper is a 
proof of non-integrability of large classes of Hamiltonian systems of the form 

H(P,  4) =t (P:+P: )+P ,A(q l ,  4 2 ) + p 2 B ( q , ,  q J +  C(q1, q 2 ) .  (1)  

For general A, B and C, these systems describe particle motion in a transverse magnetic 
field-for C = 0 they are associated with the weak noise limit of Fokker-Planck 
equations [2]. Their integrability has been studied in [2-51. 

Sufficient conditions for non-integrability (i.e. non-existence of an additional 
analytic integral) are provided by Ziglin’s theorem [6]. Originally it was applied to 
the motion of a rigid body around a fixed point [6]. Recently it has been applied to 
Hamiltonians of the form (1) with A = B = 0 and C ( q l ,  q z ) :  (i) a homogeneous potential 
[7,81, (ii) some generalised Toda lattice [ 9 ] ,  (iii) some perturbed Kepler potential 
[lo], (iv) a non-homogeneous polynomial potential [ 11-15]. In physical applications, 
non-homogeneous systems are in general the most relevant. But in the method of [ 141 
the results on homogeneous systems form an essential ingredient in the application to 
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non-homogeneous systems. Therefore, in the case that A and B in (1)  are non-zero, 
it is natural to start with a study of homogeneous systems. 

Let us assume that A,  B and C in (1) are homogeneous polynomials of degree d, d 
and 2d, respectively ( d  3 2 ) .  The application of Ziglin’s theorem requires a knowledge 
of certain monodromy matrices associated with the normal variational equation ( N V E )  

around straight line solutions. For the system under consideration here, in general no 
analytic formulae for the monodromy matrices are known. Therefore we have calcu- 
lated them numerically. On the one hand, this leads to a purely numerical non- 
integrability proof on the basis of Ziglin’s theorem, and on the other hand it turns out 
that the monodromy matrices are fitted perfectly by an analytic formula which is 
therefore conjectured to be rigorously exact. 

The rest of this paper is organised as follows. In 9 2, the N V E  around straight line 
solutions is obtained. In 0 3, Ziglin’s theorem is recalled and its numerical implementa- 
tion is explained. In 9 4, our main results are presented. In 9 5 ,  two examples are 
given, and the appendix contains the FORTRAN program by which the numerical results 
of 9 4 were obtained. 

2. Variational equations around a straight line solution 

By Hamilton’s equations of motion 

dqld t  = aH/dp dpld t  = -aH/aq ( 2 )  

61= 42U(q,, 9 2 ) -  W,(q1, 92) (3) 
4 2  = -41 U ( % ,  q2) - W2(%, 42) (4) 

where W ,  := a W l a q , ,  etc, and U ( q , ,  q 2 )  and W ( q , ,  q 2 )  are gauge-invariant potentials: 

( 5 )  

( 6 )  
If U = 0, (1) can be transformed by a gauge transformation to a Hamiltonian with 
A = B = 0, the non-integrability of which was studied in [7 ,8] .  Given our assumptions 
on A, B and C, the general form of U and W is 

with Hamiltonian (1) the equations of motion for q are written as 

92) = A,2(q1, 92) - B , , ( q , ,  92) 

W ( q , , q 2 )  = C ( q , ,  q 2 ) - & 4 ( q , ,  q2))2--t{B(ql, 42)l2. 

with constants uk, k = 0,. . . , d - 1 and wk, k = 0,. . . , 2 d ,  
First we make a rotation of coordinates in the ( q , ,  q 2 )  plane so that w,  = 0 in the 

new coordinate system, which is always possible. Then we assume also that uo = 0 in 
the same coordinates. This is a sufficient condition for (3) and (4) to have a straight 
line solution of the form 

41=0 

with 
(9) 
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We now consider a particular solution of (lo),  namely 

4 2 ( t )  = C4(f) 
with 4 ( t )  the solution of 

d24 /d t2+42d- ’  = O  
with initial conditions 

4 = 0  d 4 / d t =  - 1 / d  at t = O  

and ( wo # 0 is assumed) 

Because of the scale invariance of the system (2)-(8) the non-integrability at the 
particular non-zero energy associated with (1 1) implies the non-integrability at any 
non-zero energy. Therefore it is sufficient to consider the particular solution (1 1). 

Since 4 ( t )  is the inverse function of 

t = J ; I  dz / ( l - z2d)”2  (15) 5 
4 ( t )  has, in the complex t plane, the following independent periods: 

T,, = 4 e x p [ i ~ ( n - l ) / d ] d  dz / ( l -zZd)’”  

(16) 

Next, linearising (3) and (4) around the straight line solution q1 =0, one obtains 

Jo’ 
=2(.rr/d)’”exp[iT(n - l ) / d ] ~ ( 1 / 2 d ) / r ( 1 / 2 d + f )  

( n  = 1,2 , .  . . , d ) .  

the variational equation (5, = S q , ,  t2 = 6q2) 

y = ~,/(-2dwO)”* E = w2/ dwo. (19) 
The equation for t1 (17) is called the normal variational equation (NVE),  since it 
describes the variation normal to the given straight line solution ql = 0. The parameters 
entering the NVE are d, characterising the degree of the potential, and E and y defined 
by (19). It should be remarked that y and E are independent of U&, k > 1, and wk, k > 2. 

In the next section we show how, using Ziglin’s theorem for every d, values of y 
and E can be found for which the Hamiltonian system is non-integrable. 

3. Ziglin’s theorem 

The NVE (17) is a Hill equation with multiple periods TI, T,, . . . , Td. To each period 
T,,, 1 Q n Q d, is associated a monodromy matrix M (  T,,). The set of all monodromy 
matrices forms a group, called the monodromy group. A monodromy matrix M is 
defined to be non-resonant when the eigenvalues ( p ,  l / p )  are not roots of unity. One 
has that ITr MI > 2 implies that M is non-resonant. The form of Ziglin’s theorem that 
we use in this paper is as follows. 
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Theorem [6]. If the monodromy group associated with the NVE belonging to the straight 
line solution q1 = 0 contains two non-resonant monodromy matrices which do not 
commute, then the Hamiltonian system cannot possess an additional integral @(q, p )  = 
constant which is analytic (holomorphic), at least in the neighbourhood of the given 
straight line. 

When y = 0, the monodromy matrices of the NVE (17) have been obtained explicitly 
via a transformation of the NVE into the Gauss hypergeometric equation. The result 
of [7] is summarised as follows: Tr M ( T , , )  is independent of the period Tn and the 
explicit expression is Tr M (  T,,) 'f2d(&), where 

f Z d ( & )  = 4  cos2{(~ /2d) [ (d  - 1)2+4d~]"2} / s in2 (~ /2d)  -2 .  (20) 

Furthermore, M (  T I )  and M (  T2)  only commute whenfZd(E) = *2. Thus, if E is in the 
region 

S*d={& CO, 1 < E <2d - 1,2d + 2 <  E <6d -2 , .  . . } (21) 

such that &(&)>2 ,  then two monodromy matrices M ( T l )  and M ( T 2 )  are both 
non-resonant and non-commuting. By Ziglin's theorem, this implies the non-integra- 
bility of the system and region (21) is called the non-integrability region. 

When y f 0 we have no explicit expression of the monodromy matrices. Neverthe- 
less in this situation Ziglin's theorem can be applied on the basis of numerical data. 
The monodromy matrices M (  T,,), 1 S n d d can be obtained numerically as follows. 
Consider two independent solutions of the NVE (17), tf"'(t)  and ( ( " ( t )  with initial 
conditions 

c$"'(o) = 1 p ( 0 )  = 0 p (0) = 0 j '2' (o)  = 1 (22) 

and for every period T,,, 1 s n d d, integrate the NVE (17) numerically along the straight 
path from 0 to T,, in the complex t plane (using, e.g., the fourth-order complex 
Runge-Kutta method). At the end of each integration path one gets the monodromy 
matrix 

When it is found that ITr M,, I > 2 it can be concluded that M,, is non-resonant. For 
ITr M,, I G 2 non-resonant monodromy matrices cannot be identified numerically. 
Whether or not two monodromy matrices Mk and MI commute can be decided on the 
basis of the numerical value of the following norm of the commutator: 

When it is significantly non-zero, one can say that Mk and M I  do not commute. 
Finally, if one finds two non-resonant monodromy matrices that do not commute 

one can conclude that the system is non-integrable. In order to find for any fixed d 
the non-integrability region in the ( E ,  y )  plane, generalising the non-integrability region 
SZd on the line y = 0, this procedure is to be followed for all ( E ,  y )  on a sufficiently 
dense grid in this plane. 

In the next section the results we obtained using this method are given. 
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4. Main results-numerical facts 

By using the FORTRAN program given in the appendix and straightforward extensions 
of it, we computed monodromy matrices M,,, n = 1 ,2 , .  . . , d, for d = 2,3 ,4 ,5 ,6  at 
square grid points on the ( E ,  y )  plane and, by the procedure explained in the previous 
section, obtained the non-integrability region. We also found analytical formulae 
which perfectly fit the numerical data for the traces of the monodromy matrices and 
for the curves where two monodromy matrices commute. We checked the formulae 
up to d = 10. Until now we have not found a rigorous proof of these formulae, so we 
present them as numerical facts. 

A systematic difference occurs between the cases with d even and with d odd. A 
special role is played by certain straight lines and parabolas in the ( E ,  y )  plane which 
we introduce first. 

Definition. 

Pd = { ( E ,  ? ) [ E  - y2/(kd + 1)2-(kd + 1)2/(4d)+(d - 1)2/(4d) = 0, k odd integer} 

(i)  for d even 

(25) 
K $ = { ( E ,  y ) l s +  y/d?-dk2/4+(d-1)2/(4d)=0, k odd integer} 

Kd_ = { ( E ,  y ) l ~  - y / a -  dk2/4+ ( d  - 1)2/(4d) = 0, k odd integer}. 

(ii) For d odd 

Qd={(&, ? ) I & +  y/k2d2- k2d/4+(d-1)2 / (4d)=0,  k odd integer} 

L$ = { ( E ,  Y ) \ E  + y / a -  (kd  + 1)2/(4d) + ( d  - 1)’/(4d) = 0, k odd integer} 

L ! = { ( E ,  ~ ) I E  - y / a - ( k d + 1 ) 2 / ( 4 d ) + ( d  - 1)2/(4d) =0,  k odd integer}. 

For the trace of the monodromy matrices M,, we obtain the following result. 

Fact 1. Let 
S+ = [ ( d  - 1 ) 2 + 4 d ( ~  + ?/a)]”2 
S- = [ ( d  - 1)2+4d( E - Y/V‘Z)]’’~ 

then Tr M,,, n = 1 ,2 , .  . . , d is real and independent of n and given by 

TrMn=FZd(E, 7) 

where (i)  when d is even 

F 2 d ( E ,  y ) = 2 + 4 { C O S ( . r r / d ) + C O S [ . r r ( S + + S _ ) / 2 d ] }  

x {cos( .rr/d) + COS[T(S+ - s-)/2d]}/sin2(.rr/d) 

or (ii) when d is odd 

F2d ( E ,  y )  = -2+4  cos2[ .rr(s++ s-)/4d] cos2[r(s+ - s - ) /4d] / s in2(~/2d) .  

Properties which (34) and (35) have in common are 

F Z d ( E 3  O)=hd(&) 
(i.e. the necessary compatibility relation with the known result for y=O is satisfied) 

F2d ( E ,  7 = F2d ( E, - ? (37) 
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LO 
E 

Figure 1. Non-integrability diagram belonging to the NVE ( 1 7 )  for d = 2. On the parabolas 
F4(c, y )  = 2 and on the isolated points F4(&, y )  = -2. The non-integrability region, indi- 
cated by NI ,  is the region where F4( E, y )  > 2 minus the broken lines (see the text). 

E 

Figure 2. Non-integrability diagram belonging to the NVE ( 1 7 )  for d = 3. On the parabolas 
F6( E ,  y )  = -2 and on the other curves F6(e ,  y) = +2. The non-integrability region, indicated 
by NI,  is the region where F6(&, y ) >  2. 
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E 

Figure 3. The non-integrability diagram belonging to the NVE (17) for d = 4. On the 
parabolas & ( E ,  y )  = + 2  and on the isolated points Fg(~, y )  = -2. The non-integrability 
region is the region where Fg(&,  y )  > 2. 

0 100 
E 

Figure 4. Non-integrability diagram belonging to the NVE (17) for d = 5 .  On the parabolas 
FlO(e ,  y )  = -2 and on the other curves F,O(~, y )  = +2. The non-integrability region is the 
region where FIO(&, y )  > 2. 
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Further important properties of &(E, y )  can be seen in figures 1-4. There the sets 
where & ( E ,  y )  = *2 are drawn. In figure 1, d = 2 and E and y range from 0 to 20. 
In figures 2 ,3  and 4, d = 3,4  and 5,  respectively, and E and y range from 0 to 100. 
One has that: 

(i)  when d is even, FZd(&, y )  = 2 on the parabolas p d  given by (25)  and F 2 d ( E ,  y )  = 
-2 in the points where the two families of straight lines K': and K !  given by (26) 
and (27) intersect; 

(ii) when d is odd the curves on which F2d ( E, y )  = 2 are not represented by a simple 
function (see figures 2 and 4) and F 2 d ( ~ ,  y )  = -2 on the parabolas Q d  given by (28). 

In the region such that FZd ( E, y )  > 2 we have non-resonant monodromy matrices 
M, ,  M 2 ,  . . . , Md. In particular the half-plane E < 0 belongs to this region. 

It should be remarked that it was also found numerically that elements of the 
monodromy group other then M I , .  . . , Md never have absolute values of trace greater 
then two when Tr M,, < 2 and therefore cannot be used to provide a non-integrability 
proof in the region where F2d ( E, y )  S 2. 

Next we proceed to the commutation properties of the monodromy matrices 

In general, the set of points where Mk and MI (1 s k s d )  commute depends on k 
and 1. With Ziglin's theorem in mind an optimal result would be that Mk and MI never 
commute when they are non-resonant. For d odd this optimal result is already obtained 
choosing k = 1 , 1 =  2 (see below), whereas for d even this choice is not optimal because 
the set of points in the ( E ,  y )  plane where M I  and Mz commute partially overlaps with 
the region where M1 and M2 are non-resonant. Therefore the commutator [MI, M 3 ]  
was considered for d even and greater than two, and found to be optimal. More 
precisely the following results were obtained. 

MI, .  . . , Md. 

Fact 2. 
(i)  When d = 2, M ,  and M2 only commute on the sets P 2 ,  K :  and K !  given by 

(25), (26) and (27), respectively. 
(ii) When d is even and greater than two, MI and M3 only commute on the set 

P d ,  given by (25), and in the points where the sets K i  and Kd given by (26) and (27) 
intersect. 

(iii) When d is odd, M1 and M 2  only commute on the set Qd given by (28) and 
in the points where the sets 15': and Ld given by (29) and (30) intersect. In fact, these 
intersection points fall into two classes as follows: let k+ = 2p+ + 1 and k- = 2p- + 1 be 
the two odd integers characterising a line belonging to L': and Ld, respectively. When 
p +  and p -  are not both even or not both odd the intersection point belongs to Qd and 
when p +  and p -  are both even or both odd the intersection point lies on the curve 
where F2d ( E ,  y )  = 2. 

Combining fact 1 and fact 2 with Ziglin's theorem we can conclude the following 
statements. 

( i )  When d = 2 the non-integrability region in the (E, y )  plane is the region where 
F4(&, y )  > 2 minus its intersection with the families of straight lines K :  and K? given 
by (25) and (26), respectively. 
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(ii) When d > 2 the non-integrability region in the ( E ,  y )  plane is the region where 

In figures 1-4 the non-integrability region is indicated by NI .  

Because of the high numerical accuracy and the consistency of all results, the 
authors strongly expect that facts 1 and 2 will be rigorously proved in the near future. 

F 2 d ( E ,  Y ) > 2 .  

5. Examples 

Any subclass of the models defined by ( 7 )  and (8) with, eventually in a rotated frame, 
uo = 0, wo # 0, and w1 = 0 could be taken as an example. Interesting subclasses are 
those for which integrability has been studied before or that appear in a physical context. 

As a first example we consider a model with d = 2, defined by 

=~(P~+P:)+PlqIq2+pz(aq:+bq:)  (39) 
with constants a and b. When a =;, the function U in (5) and (6) vanishes and the 
system is related by a gauge transformation to a one-parameter class of quartic scalar 
potentials and is known to be integrable for 

When a # f, (39) was shown to be integrable in [ 5 ]  for 

(40 )  

(41 )  
Applying the results of the previous section, non-integrability is shown for all values 
of a and b ( b  # 0) such that ( E (  a, b ) ,  y (  a, b ) )  with 

b = - l  , -1 2 ,1and2 .  

(a ,  b )  = (t ,  21, ( - t ,  f), (h, 2), (0, 1) and (0, -1). 

E = (1 + 2 a b ) / 2 b 2  y =  ( 1  - 2 a ) l m i  (42 )  
does not belong to (26 )  or (27 )  with d = 2, and F4(&, 6 ) >  2 in (34 ) .  In particular, 
non-integrability is shown for 

( a ,  b ) = ( ; ,  -2 )and( (18+m)(18-m) / (16m2) ,4 )  (43 )  
with m = 1 or m > 18, which are values for which the model passes the second step of 
PainlevC analysis and has rational Kowalevski exponents (see equation (32 )  in [ 5 ] ) .  

As a second example we consider the Fokker-Planck Hamiltonians with cubic drift 
terms [ 2 ] ,  ( d  = 3 ) ,  defined by ( 1 )  with C = 0 and 

where ai,  bi are constants. By (5) and (6) the potentials U and W are computed. The 
existence of a straight line solution q1 = p1 = 0 implies uo = 3a4 - b3 = 0 and w1 = 
-a3a4- b3b4 = 0. If also w o =  -;(a:+ b:)  # 0 the results of the previous section can be 
applied with 

y = 2 ( a 3 -  b 2 ) / [ 3 ( a : + 2 b : ) ] * ’ *  
E = ( a : + b : + 2 a , a 4 + 2 b , b 4 ) / [ 3 ( a : +  b : ) ] .  

(46) 

(47 )  
By the results of 04, the existence of a second integral for a model in this class is 
excluded in the range of parameters where & ( E ,  y ) > 2 .  Finally we remark that 
integrable cases are given in the appendix of [ 2 ] .  Taking into account all straight line 
solutions it can be shown that, for the model studied in that appendix, the results are 
complete, namely, the model is non-integrable except for the cases which were shown 
to be integrable. 
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Appendix 

1 

2 

4 

999 

PROGRAM M A I N  
I M P L I C I T  
COMMON E P S , G A M ,  P I ,  1 D E G . N S T E P  
N S T E P = 5 0  
G O T 0  2 
W R I T E ( 6 , " ) ' Y O U R  C H O I C E  7 O = S T O P .  l = N E X T '  
R E A D ( 5 , ' ) l F L A G  
I F (  I F L A G ) 9 9 9 , 9 9 9 , 2  

W R I T E ( 6 , * ) ' D E G R E E  D 7 ( I N T E G E R ) , E P S I L O N  A N D  GAMMA 7 ( R E A L ) '  
R E A D ( 5 , * )  I D E G , E P S , G A M  
W R I T E ( 6 , * ) ' T R A C E  O F  MONODROMY M A T R I C E S  M I ,  I = 1 , ,  , , .D' 
P I = 4 .  D O * D A T A N (  1 ,  D O )  
DX=DCOS(  P I / D F L O A T (  I D E G ) )  
D Y = D S I N (  P I / D F L O A T (  I D E G ) )  
COMEGA=CMPLX(  D X ,  D Y )  
DO 4 K K = 1 ,  I DEG 
C T l N l T = (  l . D O , O . o D O )  
C T F  I N A = C T  I N I T + (  4 ,  ODO, lJ .ODO )*COMEGAL*(  K K -  1 ) 
C A L L  T R A C E ( C T I N I T , C T F I N A , C T R A C E )  
W R I T E ( 6 , * ) C T R A C E  
GO T O  1 
S T O P  
END 

R E A L * 8 (  A - B , D - H ,  0 - Z ) ,  C O M P L E X * 1 6 (  C )  

c*c***n****c****'******m**************************~***+u*u*~*~*~* 
C SUBROUT I NC T R A C E  C A L C U L A T E S  TRACE O F  MONO[)ROMY M A r R  I X  ( C T R A C E ) *  
C FOR S T R A I G H T  L I N E  I N  COMPLEY T I M E  P L A N €  FROM C T l N l T  TO C T f l N A  * 
C Y " * " C " * * ' * ' + Y X * " * U * * * * * + * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + *  

S U B R O U T I N E  T R A C E ( C T I N l T , C T F I N A , C T R A C E )  
I M P L I C I T  HEAL*B(A-B,D-H,O-ZI,COMPL€X*l6(C) 
D I M E N S I O N  C X ( 6 )  
COMMON E P S , G A M , P I ,  I D E C , N S T E P  
E X T E R N A L  C E Q l  
D E G = D F L O A T (  I D E G )  
F A C T = D S o R T ( P l / D E G ) / 2 , D O  
U N I T = F A C T * D C A M M A ( 0 . 5 D O / D E G ) / D E G ) / O ~ A M M A ( ~ . 5 D O / D E G + . ~ D r ~ )  
C T = C T  I N I  T 
C X (  l ) = U . D U  

C X ( 3 ) = 1 . 0 0  
C Y  I 4 ) =O . DO 
C X ( 5 ) = O . D U  

C X [ Z ) = - l . D O / S Q R T ( D E C )  

C X (  6 ) =  1 ,  UIJ 
C D E L T = ( C T  It4 I T - C T F  I N A ) / N S T F P * l J N  I T  
DO ? C l  J - 1 , N S r F P  

C l R A C E = C X ( 3 I + C X ( h )  
R E T U R N  
E N 0  

CALL CHLJNGf ( 6, CEQI , c i  , C X ,  ~ [ J E I  r 
29 C O N T I N U E  

A P P(JrJ050 
A P Pf  I O  0 6 IJ 
A P PO(1O 7 IJ 
A P P O f J 0 8 0  
A P PIJO(J9fJ 
A P PO IJ 1 00  
A P P O O l  1fJ 
A P P 0 0 1 2 0  
A P PIJU 1 3 0 
A P PCJ O 1 4 IJ  
A P l ' r i O 1 5 l J  
A P P f) IJ 1 6 0 
A P P f J O 1 7 0  
APPI ) IJ l8CI  
Ai]  PUiJ 1 90 
A P P 1) IJ 2 i ) f I 
A I ' P O I J 2  I0 
APPOlJ22,J 
A P P fJ 0 2 3 O 
A P POfJ 2 14 0 

A P PO CJ 2 6 0 
A P P (I 0 2 7 0 
A P P f l 0 2 8 l J  
A P Pl)fJ?r)IJ 
A P POIJ 3 00 
A P POI I 3 1 0 
A P  P(J0 3 Z U  
A P P O l ? 3 3 0  
A P  P O 0  34Cl 
A P PrJIJ 3 5 0 
A P P O 0  3 GO 
A P PIJrJ 3 '7 U 
A P PO0 3 8 U  
A P PI  1 0  3 9 0 
A P P O D 4 0 0  
A P P ~ I I ? ~  1 0  
A P P I 1  0 4 2 I I  
A P P O O ~ I  3 ( 1  
A P P f I O I I 4 0  
APPl  1 I . I ~ I ~ I J  
A P PI  I IJ 4 h 1 I 
A I J l ' l ~ l l ~ l  7(1 
A P r ' l i l l l l  80 
APl ' lJOl l90 
A 1' POI i',I 11) 
APl ' lJCl51 0 
A I' PI ) 0 5 2 I I 
A P P O O 5 ? I I  
A P  PI lO51llJ 
A P PO05 5 0  

A P  P O O Z ~ ( I  
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C C O M P L E X  F U N C T I O N  C E O 1  C O N T A I N S  T I i f  E O U A T I O N S  I t i A T  I i A V F  T O  * 
C B E  I N T E G R A T E D  U 

C O M P L E X  F U N C T I O N  C E Q l * 1 6 (  I,CY,] 
I M P L I C I T  
D I M E N S I O N  C X ( 6 1  
COMMON E P S . G A M . P I . I D E G . N S T E P  

R E A L * 8 (  A -B ,  D-H.0-2) , C O M P L E X * 1 6 (  C ]  

i n  
2 0 

30 

4 f l  
4 1  

42 

5 u  

60 
61 

62  

C G A M = ( f J . D O ;  1 . D h ) " G A M  
GO T O  ( 1 0 , 2 0 , 3 0 , 4 i i , 5 0 , 6 0 ) ,  I 
C E Q l = C X (  2 1 
R E T U R N  
C E Q 1 =  - C X (  I ) * * ( 2 " I D E G - l )  
R E T  U R ti 
C E Q 1 =  C X ( 4 )  
R E T U R N  
I F (  I D E G . G T . 2 ) G O I O  4 2  
C E Q l = (  E P S c C ? ( l  I M ~ 2 + C G A M * C ~ ( 2 ; ; * C X ( 3  
R E T U R N  
C E Q 1 = (  - E P S C C X ( 1 ] C u ( Z C I D E G - 2 ) + C G A M * C X  
R E T U R N  
c EQ 1 = c x  ( 6 j 
R E T U R N  
I F (  I D E G . G T . 2 ) G O T O  6 2  
C E Q l = (  - E P S * C X (  1 1 * * 2 + C G A M * C X ( Z )  I * C X ( 5  

E N D  

1 I * * (  I D E G - 2 ) * C X ( 2  

1 I * " (  I D E G - 2 ) * C X ( 2  

A P P f J o 5 6 i I  
A PPlJ f lS  71) 
A P POfJ 5 8 0  
A P PiJ 0 5 9 ( 1  
A P P l l l J 6  (JU 
A P PrJO 6 1 0 
A P P O 0 6  2 0 
A P P I J O 6 3 U  
A P POiJ 6 4 fJ 
A P PO 0 6 5 0 
A P PfJO66f l  
A P P 0 Cl 6 7 fJ 
A P P 0 0 6 8 f J  

A P Pfl IJ 7 0 fJ 
A P PfJO 7 1 f l  
A P P O 0  7 2 r l  
A P P i I i ~ 7 3 1 1  
A P PfJ i) 7 J l  fJ 
A P P f J U 7 5 i l  
A P P O 0  7 6 11 
A P POI) 7 7 0 
A P PlJ0  78 i I 
A P PfJO 79 0 
A P P0CJ 8 0 I, 
A P P f J 0 8 1 0  
A PP1)(182(J 
A P P U O 8 3 0  
APPOIJ8411 
A P P O 0  8 5 f )  

APPIIOGOIJ 

S U B R O U T I N E  C R U N G E ( N , F , T , X . D T )  
I M P L I C I  1 C O C I P L E X * 1 6 (  A - H ,  0 - 2 )  

X ( 6  1 , X 1 ( 6 )  . X 2 ( 6 )  . X 3 1 6 1  . D ( 4 , 6  I 0 I M E N S  I ON 
DO 1fJ 1 - 1  
D( 1 ,  I ) = F (  

1 0  X l (  I ) = X (  I 

D ( 2 ,  I ) = F (  
2f j  X 2 (  I ) = Y (  I 

DO 3 f 1  1.1 
D (  3 ,  I ) = F (  

3 f l  X 3 (  I ) = X (  1 

00 2fJ  1.1 

N 
, X ) * D T  
+D( 1 ,  1 ) / 2 . O D O  
N 
, Y 1  ) *0T 
+ n i p ,  I ) / 2 . f i m 1  
N 
, Y 2 )  * D I  
+ D ( 3 .  I I 
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